Learning to Discover Domain-Specific Web Content
Kien Pham, Aecio Santos and Juliana Freire

The **Goal** is to find all pages relevant to a given domain **continuously** and in a **timely** fashion.

- Tracking adult ads for human trafficking investigation.
 - 105,000 children in the U.S are being sexually exploited.
 - 70% of child sex trafficking survivors were at some point sold online.
 - 100,000 new escort ads are posted online everyday.

→ Information on the Web can be used to better understand the problem, identify victims and perpetrators.

- Monitoring secondary data to improve humanitarian crisis analysis
- Tracking online wildlife market places to identify illegal products and prevent wildlife trafficker.
- Surveilling online markets where weapons and drugs are sold to generate investigation leads.
- And more.

Limitations of Search Engines

- Do not prioritize unpopular content
- Do not support analytics

However (not being search engines)

- Limited computing resource
- Restricted crawling rate

Related Works

- Requires fully crawled snapshots
- Unable to incorporate new features

Proposed Solution

We propose an iterative re-crawling framework that predicts the number of new relevant pages a seed page will yield using data from the previous crawls. Based on the prediction, it select the best k seed pages to be re-crawled.

Ranking

Regression (REG):

\[
\text{score}(s) = \log(O(s) + 1)
\]

Learning to rank (LTR):

The training set is denoted as \(\{(s, t), y_i\}_{i=1}^T \), where \(S_t \) list of seed pages selected to crawl at timestamp \(t \), \(y_i \) list of scores of seed pages in \(S_t \)

\[
\text{score}(s) = \log(O(s) + 1)
\]

Featuarization

A pair \((s, t)\) is featuarized by the following functions:

- **avg:** Average number of new pages discovered from s
- **std:** Standard deviation of the number of new pages discovered from s
- **age:** Time since s was last crawled.
- **tod:** Time of the day at timestamp \(t \)
- **dow:** Day of the week at timestamp \(t \)
- **aa:** Age of pages discovered by the best method

Overlap removal

If a set of seed pages has high overlap, the selector only picks one of them to crawl.Overlap is computed between pair of seed pages that are crawled at the same timestamp.

\[
\text{Overlap}(s_i, s_j) = \frac{O(s_i) \cap O(s_j)}{O(s_i) \cup O(s_j)}
\]

Diversification

We use UCB1 algorithm (BANDIT) to balance trade-off between exploitation and exploration. An arm in the algorithm is modeled as a ratio between a greedy method and a random based method.

\[
\text{UCB}_{i,t} = \mu_{i,t} + \frac{\ln(t)}{n_{i,t}}
\]

Problem Definition

Given a set of seed pages \(S \) and we want to select the top-k pages \(S_k^t \) for every timestamp \(t \), where \(S_k^t \subseteq S \) and \(|S_k^t| \ll |S| \), such that re-crawling every \(S_k^t \) at a timestamp \(t \) maximizes the number of new relevant pages discovered.

Relevant Pages: pages that are relevant to the domain of interest

Seed pages: pages that contain links to relevant pages

Coverage:

\[
\text{Coverage} = \frac{\# \text{Discovered Pages}}{\# \text{Total Pages}}
\]

Experimental Evaluation

We gather data from the 3 domains: Human Trafficking, Humanitarian Crisis and Politics. For each domain, we crawl all seed pages and out-links hourly during a 1-month period.

Proposed methods: REG (Linear Regression), REG-RR, LTR, BANDIT (UCB1)

Baselines [1]: OD-WIN, CLIQ-WIN*, COV*, RR, GREEDY

References

Acknowledgements: This work was supported by the DARPA MEMEX and D3M programs.